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Unsteady three-dimensional marginal separation
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Earlier investigations of steady two-dimensional marginally separated laminar bound-
ary layers have shown that the non-dimensional wall shear (or equivalently the nega-
tive non-dimensional perturbation displacement thickness) is governed by a nonlinear
integro-differential equation. This equation contains a single controlling parameter
Γ characterizing, for example, the angle of attack of a slender airfoil and has the
important property that (real) solutions exist up to a critical value Γc of Γ only. Here
we investigate three-dimensional unsteady perturbations of an incompressible steady
two-dimensional marginally separated laminar boundary layer with special emphasis
on the flow behaviour near Γc. Specifically, it is shown that the integro–differential
equation which governs these disturbances if Γc − Γ = O(1) reduces to a nonlinear
partial differential equation – known as the Fisher equation – as Γ approaches the
critical value Γc. This in turn leads to a significant simplification of the problem
allowing, among other things, a systematic study of devices used in boundary-layer
control and an analytical investigation of the conditions leading to the formation
of finite-time singularities which have been observed in earlier numerical studies of
unsteady two-dimensional and three-dimensional flows in the vicinity of a line of
symmetry. Also, it is found that it is possible to construct exact solutions which
describe waves of constant form travelling in the spanwise direction. These waves may
contain singularities which can be interpreted as vortex sheets. The existence of these
solutions strongly suggests that solutions of the Fisher equation which lead to finite-
time blow-up may be extended beyond the blow-up time, thereby generating moving
singularities which can be interpreted as vortical structures qualitatively similar to
those emerging in direct numerical simulations of near critical (i.e. transitional)
laminar separation bubbles. This is supported by asymptotic analysis.

1. Introduction
Marginal separation occurs in a variety of high-Reynolds-number flows. Probably

the best known example is the incompressible flow past a slender airfoil at a small
angle of attack where this phenomenon has been studied independently by Ruban
(1981) and Stewartson, Smith & Kaups (1982) extending earlier work of Stewartson
(1970) and Smith & Daniels (1981). Other examples include flows past backward
facing steps, see e.g. Schlichting & Gersten (2000), flows past flared cylinders, Kluwick
(1989), channel flows with suction, Hsiao & Pauley (1994), Alam & Sandham (2000)
and viscous wall jets which are forced to change direction, Zametaev (1986). All
these flows share the common property that solutions of the classical hierarchical
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boundary-layer equations with imposed pressure distributions exist only up to a
critical value of the controlling parameter, e.g. angle of attack, step height, flare angle,
suction strength, deflection angle, etc. The limiting solution exhibits the remarkable
feature that the wall shear vanishes in a single point, but immediately recovers. At the
point of vanishing wall shear, the flow exhibits the marginal separation singularity
characterized, among others, by the occurrence of a kink in the distribution of the
wall shear stress and displacement thickness signalling a local breakdown of classical
boundary-layer theory. For larger values of the controlling parameter, this breakdown
manifests itself through the formation of a stronger singularity of the Goldstein type
where the boundary-layer calculation comes to a definite end. However, as shown first
by Ruban (1981) and Stewartson, Smith & Kaups (1982) by means of asymptotic
analysis for large Reynolds numbers, the boundary-layer equations remain valid also
for supercritical values of the controlling parameter and can be used to obtain
uniformly valid approximations to the Navier–Stokes equations if the classical
hierarchical concept of an imposed pressure distribution is given up and replaced
by an interaction strategy. The essence of the analysis then is an integro–differential
equation for the scaled wall shear as a function of the distance in the streamwise
direction. It contains a single parameter Γ which measures the deviation from the
critical value of the controlling parameter mentioned above. Both asymptotic analysis,
Ruban (1981), and additionally numerical studies, Stewartson et al. (1982), presented
in the original papers indicate that solutions to the interaction equation exist up to
a critical value Γc of Γ only. Furthermore, Stewartson et al. (1982) who calculated
Γc and Brown & Stewartson (1983) showed that two or even more different solutions
exist in a certain range below Γc. The non-existence of steady solutions within the
framework of predominately attached flows for values of Γ above Γc seems to indicate
that a significant change of the flow field must take place as Γ passes through Γc.
Further support for this conjecture was provided by Smith (1982) who investigated
the response of two-dimensional marginally separated boundary layers to unsteady
disturbances near or above Γc. It was found that the evolution of disturbances for
Γ >Γc inevitably lead to the formation of finite-time singularities. Their occurrence is
preceded by a phase of rapid thickening of the boundary layer accompanied by sub-
stantial flow reversal which, as noted, qualitatively resembles early stages of dynamic
stall before the shedding of a large eddy or vortex. Furthermore, analysis of terminal
forms of the solutions indicated that the local breakdown is so severe that they
are not influenced by the incident boundary layer in a leading-order approximation,
suggesting in turn that such singular responses could arise in principle even for below-
critical values of Γ . This was later confirmed by Ryzhov & Smith (1984) who then
concluded that ‘all marginal flows are very sensitive and should be considered to be
in danger with regard to the unsteady stall process and the associated sudden change
of the whole flow structure’. Similar conclusions were drawn by Duck (1990) dealing
with unsteady three-dimensional marginal separation along a line of symmetry.

Little effort has been made so far to compare the predictions of the asymptotic
theory of marginal separating flows and numerical solutions of the full Navier–Stokes
equations. Probably the most comprehensive comparative study is that by Hsiao
& Pauley (1994) who considered a two-dimensional laminar high-Reynolds-number
channel flow. Suction was applied through a slot in the upper wall to generate a
pressure distribution which forces the boundary layer forming on the lower wall
to separate marginally. The Navier–Stokes calculations showed that the boundary
layer became unstable near the reattachment point where separation occurred at high
suction strength and oscillations of the wall shear near the reattachment point were
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observed. As in Pauley, Moin & Reynolds (1990), this phenomenon was related to
the onset of vortex shedding at which the boundary layer becomes unsteady and
it was concluded that the critical value of Γ corresponds to the onset of vortex
shedding. More recently, the DLR-TAU-code (a Reynolds-averaged Navier–Stokes
code for steady three-dimensional flows using a pseudotime-stepping technique and
Spalart–Almaras one-equation turbulence modelling, see e.g. Gerhold et al. 1997) was
used by Braun, Kluwick & Trenker (2003) to calculate solutions of the Navier–Stokes
equations for two-dimensional steady flows past slender airfoils. Specifically, the airfoil
thickness was taken to be 10% of the chord length L̄ and the Reynolds number of
20 000 based on L̄ was considered as a compromise between the rapidly growing
computational effort and the validity of the asymptotic theory. Converged solutions
could be obtained up to a maximum angle of attack αm = 4.25◦ which agrees very
well with the value αm = 4.44◦ predicted by the theory of marginal separation. In
this connection, note that classical boundary-layer theory has already broken down
for αc = 3.37◦ which indicates that the applicability of the boundary-layer concept
can be extended significantly by adopting an interaction strategy. Also, it should be
noted that laminar–turbulent transition within the boundary layer had to be allowed
for in the numerical calculations to obtain steady solutions. Convergence for α ≈ αm

could be achieved only if transition was assumed to occur approximately at the
location of the laminar separation bubble. This observation appears to be in line with
earlier experimental and numerical work (albeit for simpler geometries) indicating
the possibility that laminar separation bubbles may trigger the transition process (e.g.
Alam & Sandham 2000; Theofilis 2003). It finds further support from the study of
Mary & Sagaut (2002) which to the authors’ knowledge represents the first satisfying
large eddy simulation of the complex flow past an airfoil. In view of the work just
mentioned, the asymptotic theory of marginal separation appears to be confronted
with the following questions:

(i) Does the passage through Γc indeed lead to a completely different flow structure
or is it associated with much milder changes of the flow behaviour (as suggested by
the results reported by Hsiao & Pauley 1994)?

(ii) Can a description of (the early stages of) the transition process triggered by
laminar separation bubbles be extracted from the theory and what role do finite-time
singularities predicted among others by Smith (1982), Ryzhov & Smith (1984), Smith
& Elliott (1985), Elliott & Smith (1987), and Duck (1990) play in this connection?

(iii) Can the occurrence of these phenomena be delayed by increasing the value of
Γc through the application of so-called smart devices, for example, by surface-mounted
obstacles and suction stripes?

In general, the investigation of these questions will require the numerical solution
of the full nonlinear interaction equation suitably generalized to account for the
effect of unsteady three-dimensional disturbances and smart devices which represents
a formidable task. However, as shown by Braun & Kluwick (2002a, 2003) for steady
flows, the treatment of the interaction equation can be simplified considerably if Γ

deviates only slightly from the critical value Γc. This and the preliminary study by
Braun & Kluwick (2002b) suggests that a similar approach might be useful to make
the problem under consideration more tractable, which is the aim of the present
investigation.

Following the problem formulation in § 2, a simplified form of the interaction
equation holding in the limit Γc − Γ → 0 is derived in § 3 which describes the evolution
of three-dimensional unsteady disturbances superimposed on a two-dimensional
steady marginally separated boundary layer. Using both analytical and numerical
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Figure 1. Flow control by means of ‘smart structures’: manipulation of leading-edge
separation using surface-mounted obstacles and/or suction. Boundary-layer coordinate x̄
measured from stagnation point S.

methods, solutions to this equation are obtained in § 4 and discussed in physical
terms. Section 5 is devoted to aspects of flow control with special emphasis on
the effects caused by surface-mounted obstacles and suction/blowing stripes. Finally,
concluding remarks and possible trends of future work are summarized in § 6.

2. Problem formulation
Consider the planar incompressible steady and laminar high-Reynolds-number flow

around the leading edge of a thin airfoil at a small angle of attack α (figure 1). As
pointed out before, we concentrate on the limiting case α � αc, where the classical
boundary-layer calculation yields a marginal separation singularity at x = x0 on the
suction side and the interaction between the local thickening of the boundary layer and
the feedback effect of the induced pressure in the outer inviscid flow field can no longer
be neglected. Special emphasis is placed on the investigation of the effect of three-
dimensional unsteady disturbances imposed in the form of surface-mounted obstacles
and/or suction/blowing distributions on the interaction process. Field variables and
coordinates non-dimensionalized with appropriate reference quantities (subscript ∞)
such as the chord length L̄ and the free-stream velocity ū∞ are defined as

(x, y, z) =
1

L̄
(x̄, ȳ, z̄), t =

ū∞ t̄

L̄
, u = (u, v, w) =

1

ū∞
(ū, v̄, w̄),

p =
p̄ − p̄∞

ρ̄∞ū2
∞

, (τx, τz) =
L̄

ρ̄∞ν̄∞ū∞
(τ̄x, τ̄z),




(2.1)

where x, y and z denote Cartesian coordinates in the streamwise direction, normal to
the wall and in the spanwise direction, u, v, w and τx , τz the corresponding velocity
and shear stress components. Further, t , p, ρ and ν represent the time, pressure,
density and kinematic viscosity. The governing Navier–Stokes equations may then be
written in the form

∂u
∂t

+ (u · ∇)u = −∇p +
1

Re
�u, ∇ · u = 0, Re =

ū∞L̄

ν̄∞
→ ∞, (2.2)

subjected to the no-slip boundary condition u = (0, vw, 0) imposed at the solid wall
y = 0. Here, Re is the Reynolds number and vw(x, z, t) denotes the distribution of the
suction velocity prescribed at the surface.
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Proper expansions in the lower deck (subscript 2) of the three-tiered interaction
regime are

u2 ∼ Re−1/10 p00

2
y2

2 + Re−1/4A1(s2, z2, t2)y2 + · · · + Re−2/5u22(s2, y2, z2, t2) + · · · ,

v2 ∼ Re−6/10 ∂

∂s2

(−A1 + p00h(s2, z2, t2))
y2

2

2
+ · · · + Re−3/4v22(s2, y2, z2, t2) + · · · ,

w2 ∼ Re−2/5w20(s2, y2, z2, t2) + · · · ,

∇p2 ∼ p00ex + · · · + Re−3/10∇2p
i
2(s2, z2, t2) + · · · , (2.3)

where

x = x0 + Re−1/5s2, y = Re−11/20y2 + Re−7/10h,

z = Re−1/5z2, t = Re1/20t2,


 (2.4)

are the corresponding stretched coordinates (notation and scalings are taken from
Braun & Kluwick 2002a). To affect the wall shear or equivalently the correction to the
negative displacement thickness A1, which is determined by the solvability condition of
the second-order problem, the height h̄ of a surface-mounted obstacle and the intensity
of the suction/blowing velocity v̄w have to be of the orders Re−7/10L̄ (Hackmüller &
Kluwick 1991), and Re−3/4ū∞ (Hackmüller & Kluwick 1990), respectively:

h̄

L̄
= Re−7/10h,

v̄w

ū∞
= Re−3/4vw. (2.5)

The latter requirement can be inferred directly by inspecting the second line of (2.3).
Similar arguments hold for the inclusion of unsteady effects leading to the slow time
scale given in (2.4), Smith (1982) and Ruban (1983).

Application of the solution procedure introduced by Stewartson (1970), taking into
account the coupling condition between A1 and the induced pressure pi

2 as given
from the solution of the upper-deck problem, the boundary and various matching
conditions within the triple-deck regime, yields, after the usual affine transformations
given, for example, in Braun & Kluwick (2002a) and supplemented with

t2 = a
−9/10
0 p

3/10
00 U

−1/5
00 T , vw → a

3/2
0 p

−3/2
00 U00vw, (2.6)

the solvability condition or fundamental equation for the wall shear A(X, Z, T )

A2 − X2 + Γ =
λ

2π

∫ X

−∞

ds√
X − s

∫ ∞

−∞

∫ ∞

−∞

1√
(s − ξ )2 + (Z − η)2

×
(

∂3

∂ξ 3
+

∂3

∂ξ∂η2

)
(A − h) dξ dη

− γ

∫ X

−∞

1

(X − ξ )1/4

∂(A − h)

∂T
dξ − κ

∫ X

−∞

vw

(X − ξ )1/4
dξ, (2.7)

with the positive constants

λ =

(
− 1

4

)
!

√
2
(

1
4

)
!
, γ =

23/4(
− 3

4

)
!
, κ =

23/4(
1
4

)
!
. (2.8)
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The constants U00 = ue(x0), p00 = −ueu
′
e|x = x0

> 0 and a0 = limx → x
±
0

|τ ′
wx | represent the

velocity of the outer inviscid flow field, the pressure gradient and the slope of the wall
shear stress as given from the classical boundary-layer calculation at the separation
point x = x0. Further, Γ ∝ Re2/5(α − αc) ∼ O(1) denotes the scaled deviation from the
critical angle of attack.

The counterpart of (2.7) for strictly planar flow, i.e. ∂/∂Z =0, is given by

A2
∞ − X2 + Γ = λ

∫ ∞

X

1√
ξ − X

∂2(A∞ − h∞)

∂ξ 2
dξ

− γ

∫ X

−∞

1

(X − ξ )1/4

∂(A∞ − h∞)

∂T
dξ − κ

∫ X

−∞

vw∞

(X − ξ )1/4
dξ ; (2.9)

here, and in the following, the corresponding quantities are indicated by the subscript
∞. Since h and vw represent local effects, they do not affect the far-field behaviour of
the wall shear A (proportional to A1) with respect to the streamwise coordinate X to
leading order which is given by A(X, Z, T ) ∼ A∞(X, T ) ∼ |X| as X → ±∞.

Equations (2.7) and (2.9) have to be solved numerically, in general, which requires
considerable computational effort (cf. Smith 1982; Duck 1990). As outlined in these
two papers, it is also possible to allow for the (slow) time dependence of the angle
of attack parameter Γ to be taken into account, for example, the pitching motion
of an airfoil. In the present investigation however, we, restrict ourselves to the case
Γ = const.

Important and well-known features of (2.7) and (2.9) are the existence of an upper
bound Γc of Γ , up to which steady solutions can be found and the non-uniqueness of
the solutions for 0< Γ < Γc. In the following, we focus on the properties of solutions
to these equations in the limit of small deviations of Γ from its critical value Γc where
analytical progress is possible.

3. Bifurcation near the critical angle of attack
The subsequent derivation of asymptotic solutions of (2.7) in the limit Γ → Γc is

largely based on earlier papers (Braun & Kluwick 2002a, 2003) where several steps
are outlined in more detail.

3.1. Asymptotic expansion of the fundamental equation

Introducing the definition Γc − Γ = ε4 → 0+ and the appropriate scalings
A(X, εZ, ε2T ) = Ā(X, Z̄, T̄ ) for the spanwise coordinate and the time, the almost
parabolic shape of the relationship between A∞(0) and Γ near the bifurcation point
Γ =Γc and numerical findings concerning the behaviour of steady three-dimensional
disturbances associated with upper- and lower-branch solutions suggest the expansion

Ā ∼ A∞c(X) + ε2a1(X, Z̄, T̄ ) + · · · . (3.1)

The leading-order term A∞c is given by the steady solution for strictly planar flow at
the branching point Γc and the unsteady three-dimensional correction a1 is represented
by a Fourier-integral with respect to the spanwise coordinate

a1 =

∫ ∞

0

[â(X, k, T̄ ) cos(kZ̄) + b̂(X, k, T̄ ) sin(kZ̄)] dk. (3.2)

Insertion of (3.1) and (3.2) into (2.7), taking into account that perturbations of the
steady two-dimensional forms of the obstacle shape and the suction distribution
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compatible with the present asymptotic analysis are of O(ε4):

h = h∞(X) + ε4h1(X, Z̄, T̄ ), vw = vw∞(X) + ε4vw1(X, Z̄, T̄ ), (3.3)

shows that a1(X, Z̄, T̄ ) can be written as the product of two functions b(X) c(Z̄, T̄ )
and indicates the structure of higher-order terms in the expansion for the wall
shear

Ā ∼ A∞c(X) + ε2b(X)c(Z̄, T̄ ) + ε4[ln ε b(X)d(T̄ ) + a2(X, Z̄, T̄ )] + O(ε6 ln2 ε). (3.4)

It is convenient to introduce the following abbreviations for the integral operators

I · = λ

∫ ∞

X

1√
ξ − X

∂2·
∂ξ 2

dξ, J · = λ

∫ ∞

X

· dξ√
ξ − X

, K· = γ

∫ X

−∞

· dξ

(X − ξ )1/4
. (3.5)

The staggered system of equations for the coefficient functions A∞c, b, c and d then
takes on the form given below. Planar obstacles and suction distributions determine
the value of Γc through the leading-order problem

A2
∞c − X2 + Γc = I (A∞c − h∞) − κ

γ
Kvw∞. (3.6)

In § 5, we demonstrate the possibility of exceeding the value Γc ≈ 2.66 arising in the
case of a locally plane and impermeable wall through suitable choices of h∞ and vw∞.
Corrections of the wall shear for planar flow caused by small deviations of Γ from
Γc are accounted for by the right eigenfunction b(X)

(2A∞c − I )b = 0, (3.7)

see figure 16. Its asymptotic behaviour, calculated in Braun & Kluwick (2003)

b(X → −∞) ∼ b− (−X)−7/2,

b(X → ∞) ∼ b+

∫ ∞

0

exp
(
−ar5/2

)
cos

(
ar5/2 + rX

)
dr, a =

λ

5

√
π

2
,


 (3.8)

with b− ≈ 1.54 and b+ ≈ 45.0 is essential for the derivation of expansion (3.4). As a
consequence of (3.7), the X-dependence of the wall shear disturbances is uniquely
determined by the properties of the unperturbed flow and thus cannot be adjusted to
arbitrary initial conditions. This obviously reflects the fact, known from other studies
of marginally separated flows (e.g. Ryzhov & Smith 1984; Smith & Elliott 1985),
that the Cauchy problem associated with the unsteady version of the interaction
equation is ill-posed, in general, owing to the unbounded growth of perturbations
from the large wavenumber spectrum. One possibility for regularizing the problem,
which has been suggested before, is to solve the Cauchy problem with ‘filtered’ initial
data, but how to choose the appropriate filter remained unclear. In contrast, the
present approach yields the proper regularization as part of the solution. Since |b(X)|
is integrable from −∞ to ∞, it follows from the lemma of Riemann–Lebesgue (see
e.g. Lighthill 1958) that the Fourier transform b̃(k) → 0 as |k| → ∞ thereby avoiding
the large-wavenumber catastrophe. It should be noted, however, that this does not
prevent the study of flows resulting from the presence of arbitrary obstacle shapes and
suction velocities. Within the framework of the present theory, forcings of different
form lead, in general, to a different evolution of the wall shear in Z̄ and T̄ while its
X-dependence is universal.
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Following the lines of the analysis presented in Braun & Kluwick (2003), it is easily
shown that unsteady three-dimensional contributions are governed by the nonlinear
evolution equation for the shape function c

∂c

∂T̄
− ν

∂2c

∂Z̄2
+ µc2 − δ = ḡ(Z̄, T̄ ), (3.9)

with the constant coefficients ν, µ, δ and the forcing term ḡ given by

ν =
〈n, Jb〉

2〈n, Kb〉 , µ =
〈n, b2〉
〈n, Kb〉 , δ =

〈n, 1〉
〈n, Kb〉 , ḡ = −γ 〈n, Ih1〉 + κ〈n, Kvw1〉

γ 〈n, Kb〉 .

(3.10)

Here, and in the following, the notation

〈n, q〉 :=

∫ ∞

−∞
nq dX (3.11)

is used for the scalar product of functions and n(X) represents the non-unique
left eigenfunction of the integral operator given in (3.7) (Braun & Kluwick 2002a,
2003). Without loss of generality, we impose the normalization condition 〈n, 1〉 =1.
Numerical calculations yield the values ν ≈ 3.0, µ ≈ 2.07 and δ ≈ 1.60 in the case
of h∞ = vw∞ = 0. The stationary points of the nonlinear evolution equation (3.9)
corresponding to planar upper- and lower-branch solutions are denoted by ±cs

where cs =
√

δ/µ.
The calculation of the next higher contribution d(T̄ ) to the wall shear is given in

the Appendix. In passing, we also note that the perturbation scheme applied in § 3.1
exhibits certain similarities with the reductive perturbation approach of Taniuti & Wei
(1968) for the treatment of weakly nonlinear hyperbolic waves. There, the first-order
solution vector can be written as the product of the right eigenvector associated with
a homogeneous set of linear equations and a function of time satisfying a solvability
condition which results from the inspection of higher-order terms.

3.2. Flow field quantities

The analysis carried out so far indicates that the intensive numerical computation
efforts required to obtain solutions of (2.7) or (2.9) can be reduced substantially
if Γ deviates only slightly from the critical value Γc. Also, by expanding the wall
shear stress in the form (3.4), the main flow characteristics become visible more
clearly since they express themselves in the form of the significantly simpler equations
(3.6), (3.7), (3.9) and (A 2). In this connection, it is interesting to determine also the
associated asymptotic structure of other field quantities such as the induced pressure
disturbances and the lateral component of the wall shear which provide not only
further insight into the flow behaviour, but may be useful also for future comparison
with experimental data or results of numerical calculations based on the full equ-
ation (2.7).

The coupling condition between the displacing effect of the viscous sublayer and
the feedback pressure P ∝ pi

2 following from the upper-deck solution is given by

P (X, Z, T ) = − 1

2π

∫ ∞

−∞

∫ ∞

−∞

1√
(X − ξ )2 + (Z − η)2

∂2(A − h)

∂ξ 2
dξ dη, (3.12)
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Figure 2. Interaction pressure distribution near the critical angle of attack, equation (3.13)
with h∞ = vw∞ = 0. Dashed lines: far-field asymptotes (3.14).

which on substituting (3.4) leads to the expression

P̄ (X, Z̄, T̄ ) ∼ P∞c + (ε2 c + ε4 ln ε d)Pb + O(ε4),

P∞c(X) =
1

π

∫ ∞

−∞

(A∞c − h∞)′

X − ξ
dξ, Pb(X) =

1

π

∫ ∞

−∞

b′

X − ξ
dξ.


 (3.13)

The far-field behaviour of P∞c is given by Hadamard’s finite part of the corresponding
divergent integral in (3.13) and that of Pb can be obtained by the method applied in
the Appendix of the paper by Braun & Kluwick (2003),

P∞c ∼ 2

π
ln |X| + · · · , Pb ∼ O(X−2), X → ±∞, (3.14)

see figure 2.
It is difficult to measure wall shear stresses directly, in particular near separation

where their magnitude is small. Instead, oil coatings are often used to visualize the
wall streamlines near separated flow regions. These can easily be calculated within
the framework of the present study. To this end, the leading-order contributions of
the wall shear components

τwx =

(
Re11/20 ∂u2

∂y2

+ Re1/5 ∂v2

∂s2

) ∣∣∣∣
y2=0

∼ Re3/10a
3/5
0 p

−1/5
00 U

4/5
00 A∞c + O(ε2),

τwz =

(
Re11/20 ∂w2

∂y2

+ Re1/5 ∂v2

∂z2

) ∣∣∣∣
y2=0

∼ Re3/20a
13/10
0 p

−11/20
00 U

7/5
00 ε3 ∂c

∂Z̄
Υ + O(ε5),

Υ (X) = −
(

1
2

)
!
(
− 1

4

)
!

21/4π

∫ X

−∞

Pb

(X − ξ )3/4
dξ




(3.15)
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Figure 3. Leading-order X-dependence of the wall shear stress τwz and slope dZ̄/dX of
wall streamlines, (3.16). Open circles denote leading-order separation and reattachment lines
(h∞ = vw∞ = 0).

are inserted into the differential equation dx/dz = τwx/τwz to give

dZ̄

dX
∼ Re−3/20a

7/10
0 p

−9/10
00 U

3/5
00 ε4 Υ

A∞c

∂c

∂Z̄
+ O(ε6), (3.16)

see figure 3.
Surface plots of constant vorticity are usually used to illustrate computational fluid

dynamics results, especially if vortical structures appear, as for example, in the near
wall regime of transitional separation bubbles. In the lower deck, the vorticity vector
ω = ∇ × u is given by

ω =




Re3/20 ∂w20

∂y2

+ O
(
Re−2/5

)

Re−1/20 ∂A1

∂z2

y2 + O
(
Re−1/5

)
−Re9/20p00y2 − Re3/10A1 + O

(
Re3/20

)




, (3.17)

which shows that A1 represents the leading-order correction of the vorticity component
in spanwise direction.

4. The bursting process and the generation of vortex sheets
In this section, our main interest is the nonlinear evolution equation (3.9). To

eliminate various constants the transformation

c(Z̄, T̄ ) + cs = 2csu(z, t), Z̄ =

√
ν

2µcs

z, T̄ =
t

2µcs

(4.1)
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is applied to end up with the forced Fisher equation (Fisher 1937)

∂u

∂t
− ∂2u

∂z2
= u − u2 + g(z, t), (4.2)

with the forcing term g = ḡ/(4δ). The stationary points us = (0, 1) of the unforced
equation (4.2) describe the lower- and upper-branch solutions associated with steady
planar flow. Their stability properties can be determined from a linear analysis
based on the ansatz u(z, t) = us + �u exp(ikz + ωt) where |�u|  1, k and ω denote
the (small) amplitude, the wavenumber and the angular frequency, respectively. We
then obtain the dispersion relations ω = 1 − k2 for us = 0 and ω = −1 − k2 < 0 for
us = 1 indicating that lower-/upper-branch solutions are unstable/stable in general.
Equations of Fisher’s type (heat equations with nonlinear source terms) are known
from the description of nonlinear wave propagation phenomena in gene populations,
reaction-diffusion and heat conduction processes. Its appearance in the context of
marginal separation forms one of the key results of the present investigation. In
contrast to studies dealing with the temporal evolution of gene populations, reactant
concentrations or temperature distributions where the concentration or temperature
u(z, t) is limited to positive values within the range [0, 1] or [0, ∞) no restrictions
on the magnitude and sign of u exist in the present case. As a consequence, given
smooth and bounded initial data may not only evolve into bounded solutions, but
may also lead to a blow-up of the solutions within finite time, indicating the bursting
of the separation bubble associated with the ejection of near wall fluid out of the
boundary layer. For a general introduction into the subject of singularity formation
in the solution of nonlinear parabolic equations the reader is referred to the surveys
given in Galaktionov & Vazquez (2002) and Samarskii et al. (1995).

To obtain some first insight, it is useful to consider the simplest case of unforced
planar flow with the initial condition u(t0) = u0 = const, where (4.2) can be solved
analytically,

u(t) =
u0 + u0 tanh[(t − t0)/2]

1 + (2u0 − 1) tanh[(t − t0)/2]
. (4.3)

For u0 > 0, the steady planar upper-branch solution us = 1 is approached as t → ∞,
whereas for values of u0 below the lower branch us =0, finite-time blow-up occurs at
the blow-up time

t∗ = t0 + 2 artanh[1/(1 − 2u0)], (4.4)

(see figure 4). Surprisingly, however, this blow-up does not terminate the solution
which, in fact, can be continued beyond t∗ where it approaches the stable upper
branch asymptotically in the limit t → ∞. The possibility of continuing solutions of
the interaction equation (2.7) or its two-dimensional counterpart (2.9) beyond finite-
time blow-up apparently has not been recognized so far. The exploration of this
phenomenon also under conditions which are more general than those leading to
(4.3) is one of the main aims of the present study. To this end, we continue with the
description of some numerical experiments which, in fact, provided the first hints of
the possibility of extending solutions beyond the blow-up time.

4.1. Numerical experiments

An implicit Euler finite-differencing scheme (first-order backward and second-order
accurate centred difference formulae for the time and spatial derivatives, respectively,
and Taylor series expansion of the nonlinear term at the previous time step) is applied
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Figure 4. Solutions of Fisher’s equation (4.2) for planar flow without forcing. Open circles
denote the different initial conditions u(t0 = 0) = u0 = (−0.1, 0.1, 5), dashed lines: stationary
states us = (0, 1), blow-up time t∗.

to (4.2), leading to the tri-diagonal linear equation system

−ui−1,j

�z2
+

(
1

�t
+

2

�z2
+ 2ui,j−1 − 1

)
ui,j − ui+1,j

�z2
=

ui,j−1

�t
+ u2

i,j−1 + gi,j , (4.5)

which is solved using the Thomas algorithm. Here, �z = 2L/N and �t denote the step
sizes of the computational domain z ∈ [−L, L] and u(z, t) → ui,j = u(i�z − L, j�t)
with i = 0, 1, · · · , N and j =0, 1, · · ·. In the following examples, the initial condition
is chosen to be the stable planar upper-branch solution, i.e. u(z, 0) = 1 and typical
step sizes are of the order �t ∼ O(�z2) ≈ (10−4 . . . 10−6). The forcing term is assumed
to be of the form

g(t) = a sin(ωt) θ(t), (4.6)

g(z, t) = a sin(ωt) e−(z/B)2 θ(t), (4.7)

for planar and three-dimensional flow, respectively, and therefore corresponds
to vibrating surface-mounted obstacles or periodic alternating suction/blowing
distributions. Here, a is the forcing amplitude, ω the angular frequency, B a typical
extent of the three-dimensional disturbance in spanwise direction and θ(t) denotes
Heaviside’s step function. Note that the assumed form of the forcing (4.7) leads to
the symmetry property u(z, t) = u(−z, t).

Figure 5 displays numerical solutions for planar flow. Depending on the magnitude
of the parameter a relative to a critical value ac(ω), completely different situations
arise. For a < ac, a constant response amplitude and phase shift of u with respect to g

is obtained after some time. In this context, note the possible extension of the values of
u into the unstable regime u < 0, i.e. the delay of the stall phenomena through transient
mechanisms (‘dynamic stall’). On the other hand, a slight increase of a beyond ac leads
to a growth of the response amplitude until nonlinear effects dominate the evolution
process and eventually cause the bursting of the separation bubble at a finite time
t∗. However, a continuation of the solution beyond the blow-up time t∗ is found
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Figure 5. Temporal evolution of the scaled wall shear contribution u(t) for planar flow due to
forcing (4.6) with ω = 2. For amplitudes larger than ac ≈ 1.44 repeated bubble bursting occurs
(blow-up time t∗).

to be possible provided that the step size �t in the numerical scheme is kept fixed
and is not refined until the restricted machine precision terminates the calculation
before t∗. Similar to the analytical result (4.3) for unforced flows this continuation is
accompanied with the occurrence of a pole-like singularity which triggers the initial
phase of boundary-layer recovery for t > t∗. The presence of the forcing term (4.6),
however, prevents a full recovery of the boundary layer, but causes the formation
of another finite-time singularity leading eventually to an almost periodic process
of repeated bubble bursting. As an essential result we therefore conclude that the
bursting process is a temporary phenomenon which is associated with the release of
a planar vortex sheet.

Finite-time blow-up is obtained also in the case of three-dimensional flow as can
be seen if the numerical solution resulting from the forcing (4.7) is plotted along
the axis z = 0. Here, we turn our attention to the blow-up profiles, i.e. curves u(z, t)
for fixed t near t∗. For t < t∗, a pronounced focusing of the solution in the form
of a rapid increase of the amplitude at z =0 is obtained (figure 6). Beyond t∗, a
characteristic pattern appears which moves away from the z = 0 axis. Its qualitative
shape and movement is seen to be reliable with respect to changes in the step sizes.
The large amplitudes of this moving pattern point to the generation of a pair of
moving singularities immediately beyond blow-up which is supported by asymptotic
analysis and interpreted as the creation of Λ-vortices. A comparison between the
numerical results and the asymptotic prediction is given in figures 7 to 9.

Although the numerical scheme seems to accomplish the transition through the
blow-up point, it cannot, of course, handle moving singularities in the correct manner.
A numerical method specially designed to resolve the dynamics of moving singularities
arising in the solution of nonlinear partial differential equations which exhibit finite-
time blow-up has been published by Weideman (2003). Therein, a combination of
a conventional spectral method and numerical analytic continuation of the solution
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Figure 6. Numerical solution of (4.2) with forcing (4.7) before blow-up t < t∗ – the last eight
time steps. Chosen parameters: a =30, ω =2, B =0.1, L= 5,�t = 10−5,�z = 10−3.
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Figure 7. Numerical solution of (4.2) with forcing (4.7) approaching the blow-up profile f −
0 ,

(4.14) (dashed line), corresponding to figure 6 – the last eight successive time steps.

into the complex plane by means of Padé approximations is used to calculate the
trajectories of singularities in the complex plane before blow-up. In the context of
the present paper, one of the presented examples (heat equation with quadratic
nonlinearity) is of special interest insofar as it exactly confirms our findings provided
the symmetry relation (4.15) is taken into account.

4.2. Finite-time blow-up: before and beyond

Following the presentation of numerical evidence for the formation of finite-time
singularities and the possibility of continuing the solutions of (4.2) beyond blow-up
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Figure 8. Numerical solution of (4.2) with forcing (4.7) beyond blow-up, a = 30, ω = 2,
B = 0.1, L= 5, �t =10−5,�z = 10−3. Numbers indicate the number of successive time steps
after the blow-up time t∗=̇ 4.3359175. Dashed line: blow-up profile f +

0 , (4.14).
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Figure 9. Numerical solution beyond blow-up (for legend see figure 8).

even in the case of three-dimensional flows, we next analyse this phenomenon using
asymptotic methods.

Without loss of generality, we locate the finite-time blow-up at t = t∗ =0 and for
three-dimensional flow additionally at z = z∗ = 0.

For planar flow, the behaviour of the solution near the blow-up point is simply
given by

u(t) ∼ 1

t
+

1

2
+

1 + 4g(0)

12
t +

g′(0)

4
t2 + O(t3), t → 0±, (4.8)
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and therefore confirms the observed pole-like singularity in the numerical solution
and its continuation beyond the blow-up time (figure 5).

In the case of three-dimensional flow, the asymptotic analysis of the flow structure
near blow-up is significantly more complicated owing to a subtle balance between the
time-dependent, nonlinear and diffusion terms of (4.2) and is not fully understood
yet. Here, we follow the investigation of an evolution equation with cubic nonlinearity
by Hocking et al. (1972). The ‘approximate similarity’ ansatz proposed therein can
readily be adopted to the form of (4.2) and yields the representation

u(z, t) ∼ 1

t
f (η, τ ) + · · · , η =

z√
|t | τ

, τ = − ln |t | → ∞, (4.9)

which results in

f +
η

2
fη − f 2 =

η

2τ
fη − fτ − sgn(t)

τ
fηη − sgn(t) e−τ f − e−2τ g. (4.10)

In the immediate vicinity of the blow-up point, the linear and the forcing term of the
right-hand side of (4.2) play an insignificant role since they are exponentially small in
the representation (4.10) and therefore neglected in the further investigation.

The appropriate coordinate expansion of f is

f (η, τ ) ∼ f0(η) + g1(η)
ln τ

τ
+

f1(η)

τ
+ O

(
ln2 τ

τ 2

)
, (4.11)

leading to the system of first-order ordinary differential equations

f0 +
η

2
f ′

0 − f 2
0 = 0, fn +

η

2
f ′

n − 2f0fn = Gn, gn +
η

2
g′

n − 2f0gn = Hn, (4.12a–c)

with n= 1, 2, . . . where Gn(η), Hn(η) are functionals of f0, f1, . . . , fn−1 and
g1, . . . , gn−1. To ensure uniformly valid expansions for η → 0, i.e. avoid the appearance
of logarithmic singularities at the axis η = 0, the condition

G′′
n(0) − sgn(t)

2
Gn(0) = 0 (4.13)

for the right-hand side of (4.12b) must be satisfied (Hocking et al. 1972). The results
for the coefficient functions of (4.11), taking into account (4.13), are given by

f
∓
0 =

8

8 ± η2
, g

∓
1 = ∓ 10 η2

(8 ± η2)2
, f

∓
1 =

16 ∓ c1η
2 ∓ 8η2 ln |8 ± η2|
(8 ± η2)2

, (4.14)

where c1 is an arbitrary constant depending on initial conditions and the upper/lower
sign corresponds to t → 0∓. It should be noted that the form of the results (4.14)
associated with these limits reflects the remarkable transformation property of (4.10)
with exponentially small terms being dropped

u(z, t) = −u(iz, −t) → f (η, τ ; t) = f (iη, τ ; −t), (4.15)

which shows that the flow behaviour for t → 0+ can be derived directly from the
flow behaviour for t → 0− by the simple change η2 → −η2 of variables. Physically, this
means that the focusing of the blow-up profile gives birth to two singularities located
at η = ±

√
8 which move away from the line of symmetry z = 0 in opposite directions.

Further insight into this process may be gained from figure 10 which displays the
functions f0(η), g1(η) entering the leading-order terms of the representation (4.11) for
f (η, τ ).
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Figure 10. First- and second-order spatial structure of finite-time blow-up, equation (4.14).

A comparison between the leading-order blow-up profiles f
±
0 (η) and numerical

calculations is given in figures 7 to 9. For t < 0, the agreement between numerical
and asymptotic results is almost perfect. Larger discrepancies, however, are observed
for t > 0. These are expected to result primarily from shortcomings of the numerical
scheme which is able to capture the correct decay behaviour for η → ±∞, but fails to
resolve adequately the pole-like singularities occurring in the solution. Despite these
difficulties, the qualitative agreement between numerical and analytical results clearly
adds further support to the theoretical prediction of moving singularities emerging
beyond blow-up. The result

u(z, t) =

(
t +

z2

8 ln |t | + · · ·
)−1

, t → 0±, (4.16)

following from (4.9) and (4.14) shows that the blow-up or bursting process represents
a localized phenomenon. The numerical results for t > 0 reflect the internal structure
of the moving singularity where – as discussed later – expansion (4.11) fails to yield
a uniformly valid description of the solution near these singularities and therefore
does not really fit to the predicted pole of first order with the exception of the decay
behaviour for η → ±∞.

As pointed out before, (4.15) has the important consequence that the solutions
holding before and after blow-up are related via a simple change of coordinates.
However, while the asymptotic representation for f − is uniformly valid in the sense
that higher-order terms produce small corrections to the lower-order terms everywhere,
this is no longer the case for f +. In fact, it is easily seen that all terms are of equal
magnitude in the vicinity of the moving singularities where η2 − 8 ∼ O(ln τ/τ ). To
restore uniform validity of the solution for times beyond blow-up, an attempt was
made to consider the neighbourhood of the moving singularities separately. From the
inspection of (4.10), it is clear that the effect of diffusion first enters the expansion
(4.11) at the level of O(1/τ ). In the immediate neighbourhood of the singularities
where large gradients exist, a balance between transient, nonlinear and diffusion terms
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is expected. This in turn suggests the introduction of the stretched inner variable

y = (η −
√

8)τ, (4.17)

(here for the right running singularity η →
√

8) to obtain from (4.10)
√

2τFy − F 2 + τFyy = −F − y

2
Fy − y

2τ
Fy +

√
2Fy − Fτ + O

(
e−τ

)
(4.18)

with F (y, τ ) = f (η, τ ). The corresponding inner expansion is

F (y, τ ) ∼ τF0(y) + F1(y) +
F2(y)

τ
+ O(τ−2), (4.19)

leading to the staggered system
√

2F ′
0 − F 2

0 + F ′′
0 = 0, (4.20a)

√
2F ′

1 − 2F0F1 + F ′′
1 = −F0 − y −

√
8

2
F ′

0, (4.20b)

√
2F ′

2 − 2F0F2 + F ′′
2 = −F0 − y

2
F ′

0 − F1 + F 2
1 − y −

√
8

2
F ′

1, · · · . (4.20c)

According to (4.20a), the internal structure of the moving singularity is essentially
a pole of second order F0 ∼ 6/(y − ys)

2 located at y = ys which decays in the form
F0 ∼ −

√
2/y as y → ±∞.

To match inner and outer solution, the corresponding expansions for y → ±∞ and
η −

√
8 → 0 are compared,

F0 ∼ −
√

2

y
+

2 ln |y|
y2

+
C0

y2
+ O

(
ln2 |y|

y3

)
,

F1 ∼ 1

4
+

ln |y|√
2y

+ · · · , F2 ∼ − y

16
√

2
+ · · · ,




(4.21)

f +
0 ∼ −

√
2

η −
√

8
+

1

4
− η −

√
8

16
√

2
+ · · · ,

g+
1 ∼ 5

2(η −
√

8)2
+

5

4
√

2(η −
√

8)
+ · · · ,

f +
1 ∼ 2 + c1 + 8 ln(2

√
8) + 8 ln |η −

√
8|

4(η −
√

8)2
+ · · · .




(4.22)

As we can see, f +
0 matches the leading-order terms of F0, F1 and F2, whereas terms

of O(ln τ/τ ) differ by a factor of 1/2. Terms of O(1/τ ) can be matched provided that
C0 = 2 + c1 + 8 ln(2

√
8). This matching discrepancy apparently arises from the gap

between the region of breakdown of the outer expansion (4.11) and the extension
of the internal structure of the moving singularities. Since it is not clear how to
overcome this difficulty at present, a close investigation of the flow behaviour near
the singularities if desired has probably to resort to the numerical solution of the full
equation (4.2). In this connection, the following observation may be important. The
asymptotic representation of f − involves an infinite number of arbitrary constants
which allows the embedding of the local into a global solution. Because of the
uniform validity of this expansion, however, constants entering at higher order have
an increasingly weaker effect on the result. Obviously, this is no longer true for
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t > 0 where all these constants are of equal importance in the neighbourhood of
the moving singularities where (4.11) fails to yield a uniformly valid expansion. This
in turn may suggest that the solution there depends strongly on weak changes of
initial conditions before blow-up, possibly associated with chaotic behaviour. Clearly,
further investigations are required to clarify this important issue.

Inspection of (4.14) reveals an obvious weakness of the expansion (4.11), that
the location of the moving singularities is fixed at ηs = ±

√
8 to all orders and thus

does not allow for corrections of the paths as the number of terms is increased. More
flexibility in this respect can be gained by applying the method of strained coordinates
to (4.11) which is found to be equivalent with an alternative and inverse formulation
of (4.9):

u(z, t) ∼ 1

t

1

h(η, τ )
+ · · · , h(η, τ ) = h0(η) + j1(η)

ln τ

τ
+

h1(η)

τ
+ · · · . (4.23)

In this context, we refer to the study by Velázquez, Galaktionov & Herrero (1991)
who used this inverse formulation and (in contrast to the approach by Hocking et al.
1972) the method of matched asymptotic expansions to obtain the expansion (4.23).
Unfortunately, however, the result

h±(η, τ ) ∼ 1 ∓ η2

8
∓ 5η2

32

ln τ

τ
−

(
1

4
± c1η

2 ± η2

8
ln |η2 ∓ 8|

)
1

τ
+ · · · (4.24)

loses its uniform validity in the same η, τ domain as expansion (4.11), but it is not
clear anyway if the concept of uniform validity can be maintained because of the
presence of singularities. Since the paths of the moving singularities are determined
by the zeros of h+(η, τ ) it, nevertheless, indicates more clearly that ηs(τ ) may deviate
from the values ±

√
8 by corrections of O(ln τ/τ ):

ηs(τ ) =
zs(t)√

tτ
= ±

√
8 + O(ln τ/τ ). (4.25)

As shown in figure 11, this is also supported by the numerical results of the numerical
test case discussed in § 4.1 which can be represented reasonably accurately by the
curve fit ηs(τ ) = ±(

√
8 + 2.664 ln τ/τ ).

4.3. Singular travelling waves

It is well known that Fisher’s equation (4.2) admits bounded solutions which describe
waves of constant form travelling in the lateral direction (see e.g. Sherratt 1998 and
references therein). Here, we are concerned with the occurrence of singular travelling
waves. If u is written in the form

u(z, t) = ū(ξ ), ξ = z − Ut − ξ0, (4.26)

where ξ and U denote the wave coordinate and the wave speed and the arbitrary
constant ξ0 accounts for the translation invariance of the wave profile, (4.2) without
the forcing term reduces to

ū′′ + Uū′ + ū − ū2 = 0. (4.27)

Because of the invariance property u(z, t; − U ) = u(−z, t; U ), it is sufficient to consider
right running waves only. Bounded solutions join the stationary states ū = 1 and ū= 0,
whereas the (single, isolated) singular solutions deviate from and return to the stable
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Figure 11. Generation of a pair of moving singularities: asymptotic versus numerical results.
Path of singularity ηs(τ ) – open circles denote location of ‘singularities’, i.e. the maxima of the
curves in figures 8 and 9, solid line: least-squares fit ηs = ±(

√
8 + 2.664 ln τ/τ ), dashed line:

leading-order asymptotic result ηs = ±
√

8, (4.25).

upper-branch level ū= 1 having the decay behaviour

ū(ξ ) ∼ 1 ∓ a exp

[
−

(
U

2
±

√
U 2

4
+ 1

)
ξ

]
, a  1 (4.28)

as ξ → ±∞ and the structure

ū(ξ ) ∼ 6

(ξ − ξs)2
− 6U

5(ξ − ξs)
+

25 − U 2

50
+ O(ξ − ξs), ξ → ξs (4.29)

near the pole where ξs denotes the location of the singularity. Representative examples
are shown in figure 12. The limiting behaviour of (4.27) for U → ∞ can be obtained
by the transformation ū(ξ ) = U 2φ(ζ ), ξ = ζ/U , yielding

φ′ − φ2 + φ′′ ∼ O(U−2), (4.30)

which is of the form of equation (4.20a). The internal structure of the moving
singularities just beyond blow-up therefore can be interpreted as singular travelling
waves in the limit of large wave speeds. On the other hand, the solution corresponding
to the stationary limit U = 0 is given by

ū(ξ ) = 1 + 3
2
sinh−2

(
ξ

2

)
, (4.31)

which is the aperiodic limiting case (with the invariant g3 = −1/216) of the general
solution containing the Weierstrass elliptic ℘-function (Abramowitz & Stegun 1970)

ū(ξ ) = 6℘
(
ξ ; 1

12
, g3

)
+ 1

2
. (4.32)

The absence of any forcing term enables the specification of the closed-form solution
(4.32) describing a periodic array of singularities which also indicates the infinite
number of possible solutions reflected in the indeterminacy of g3.
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Figure 12. Isolated singular travelling-wave solutions of Fisher’s equation (4.27) for different
values of the wave speed U and the choice ξs = 0 (right running wave). Dashed line: steady
limit U = 0, equation (4.31).

4.4. The supercritical flow regime Γ >Γc

Note that the bifurcation structure outlined in § 3 is preserved for values of Γ beyond
Γc with the exception of the sign in front of δ in (3.9) leading in turn to solutions
c with complex stationary points ±ics . For this reason, no stationary states can be
obtained in the case of Γ > Γc. Using the transformation of variables (4.1), we obtain
the counterpart of (4.2),

∂u

∂t
− ∂2u

∂z2
= u − u2 − 1

2
+ g. (4.33)

The essential feature of this equation becomes apparent if, similar to the subcritical
case treated in § 4, the simple case of unforced planar flow with the initial condition
u(t0) = u0 is considered. The resulting solution,

u(t) =
u0 + (u0 − 1) tan[(t − t0)/2]

1 + (2u0 − 1) tan[(t − t0)/2]
, (4.34)

now blows up in finite time whichever u0 is chosen. However, also in this case, the
solution can be continued beyond blow-up but, contrary to (4.3), bursts periodically
with the cycle duration 2π (in the original time variable T , the period between
successive bursts is π/(µcs

√
Γ − Γc) and therefore tends to infinity as Γ → Γc). This

supercritical solution for unforced two-dimensional flow corresponds to the numerical
results of Smith (1982), at least qualitatively, since Γ − Γc there was chosen to be of
O(1) and not small as assumed here.

Finally, we briefly note that the local blow-up behaviour of three-dimensional flow
described by (4.33) is identical to that investigated in § 4.2.

5. Flow control
Modern developments in aircraft design increasingly include applications of smart

structures for flow control, i.e. a combination of sensors, actuators, real-time control
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systems and data processing as well as the use of new materials to increase manoeuvr-
ability, reduce drag and flow-induced noise radiation. Since leading-edge separation
bubble bursting is associated with the rapid transition to turbulent boundary-layer
flow and consequently with an increase of drag, it is desirable to retard the onset of
separation bubbles.

The investigations carried out so far indicate that near critical flows where Γ ≈ Γc

respond very sensitively to imposed disturbances such as inhomogeneities in the
oncoming flow, external sound fields, structure vibrations and surface impurities due
to icing, wetting and particle deposition. This sensitivity allows also for a very effective
improvement or selective manipulation of the flow conditions in the crucial region of
interaction by means of localized surface-mounted obstacles and/or suction/blowing
distributions as outlined below.

5.1. Increase of the maximum angle of attack

To motivate the effort to increase the value of Γc up to which steady states may
exist, we draw attention to the results of a comparative study between Navier–
Stokes computations and the interactive approach of marginal separation applied
to a specific example of the planar steady flow past a thin symmetric airfoil at
small angles of attack and the moderate Reynolds number of 20 000 (Braun et al.
2003). The breakdown of classical boundary-layer theory in the form of the marginal
separation singularity occurred at an angle αc of approximately 3.37◦, whereas the
Navier–Stokes computations and the interaction theory admit converged solutions
up to the coincident values αm ≈ 4.25◦ and 4.44◦, respectively. The unexpected large
difference of about one degree between the breakdown of the classical boundary-layer
calculation and that of the interaction theory corresponding to (αm − αc) ∝ Re−2/5Γc

clearly indicates that mechanical devices which allow Γc to increase may prove efficient
in achieving substantially higher maximum lift without bubble bursting.

From (3.6), it is seen that the value of Γc can be affected by planar obstacles and
suction distributions. In the following, we concentrate on two examples, an obstacle
shape with continuous curvature and a suction slot with a constant suction rate.
Specifically, we consider the family of obstacles

h∞(X) = H

[
1 −

(
2(X − Xc)

L

)2]3

θ

(
L

2
− |X − Xc|

)
(5.1)

and suction distributions

vw∞(X) = V θ

(
L

2
− |X − Xc|

)
, (5.2)

where the parameters Xc, L, H and V denote the location, length of the device, height
of the obstacle and the suction rate, as indicated also in figures 18 and 19.

In the first example, the parameters H or alternatively V were varied for a fixed
location Xc =0 and a set of different values of the length of the device. For each
parameter combination the value of Γc was determined by means of the numerical
procedure described in Braun & Kluwick (2002a). The results depicted in figures 13
and 14 show that the value Γc ≈ 2.66 associated with the case of H = V = 0 can
be exceeded significantly if we choose H to be positive (corresponding to a hill), V

to be negative (which means suction) and L as large as possible. In contrast, dents
and blowing are seen to lead to a reduction of Γc. Note that the characteristic shape
of the limiting curves Γc = Γc(L, H ) indicates the existence of optimal parameter
combinations (L, H ) for which Γc is a maximum. Computed leading-order wall shear
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Figure 13. Extension of Γ in the case of the planar-flow problem by means of a
surface-mounted obstacle according to (5.1) with Xc = 0. Solutions of (2.9) for a given Γ
and L exist in the range of H ∈ [Hmin, Hmax] in the left-hand side domain of the drawn
limiting curves Γ = Γc .
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Figure 14. Extension of Γ in the case of the planar-flow problem by means of a suction
distribution according to (5.2) with Xc = 0. Solutions for a given Γ and L exist in the left-hand
side domain of the drawn limiting curves Γ =Γc .

distributions A∞c(X) and right eigenfunctions b(X) for different values of V and L =4
are depicted in figures 15 and 16.

In the second example, the location Xc of the devices is shifted along the X-axis
and the parameters H, V and L are held constant (figures 17 and 18). Of course,
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Figure 15. Solutions of (3.6) for a suction distribution according to (5.2) with Xc = 0, L= 4
and h∞ = 0 in dependence of the amplitude V ∈ [−3, 1] (steps �V = 0.2). Dashed line: A∞c(X)
for vw∞ = h∞ = 0.
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Figure 16. Solutions of (3.7) for a suction distribution according to (5.2) with Xc = 0, L= 4
and h∞ = 0 in dependence of the amplitude V ∈ [−3, 1] (steps �V = 0.2). Dashed line: b(X)
for vw∞ = h∞ = 0.

the influence of these devices on Γc tends to zero as Xc → ±∞ (i.e. when their effect
on the interaction process becomes less important and eventually vanishes) and the
value Γc ≈ 2.66 is reached in these limits. As we can see, the location of the obstacle
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Figure 17. Maximum possible angle of attack Γc for the solution of (3.6) with vw∞ = 0 in
dependence of location Xc and shape parameters L and H of an obstacle according to
(5.1). Dashed line: Γc ≈ 2.66 for H = 0; open circles denote leading-order separation and
reattachment position for H = 0.
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Figure 18. Maximum possible angle of attack Γc for the solution of (3.6) with h∞ =0 in
dependence of location Xc and shape parameters L and V of a suction distribution according
to (5.2). Dashed line: Γc ≈ 2.66 for V = 0; open circles denote leading-order separation and
reattachment position for V = 0.

affects Γc very sensitively. In the case of the suction distribution, however, the value
of Γc is less sensitive with respect to the centre location if Xc < 0; its effect decays
very slowly.
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Figure 19. Forcing amplitude in dependence of location Xc and length L of an obstacle
according to (5.1). Open circles denote leading-order separation and reattachment positions.

For practical purposes, consider again the flow around the airfoil at a Reynolds
number of 20 000 mentioned above. In this special case, L =1 and H = 1 corresponds
to 3.2% and 0.1% of the chord length L̄, respectively, and V = 1 to 0.86% of the
free-stream velocity ū∞.

5.2. Forcing amplitude

We conclude this section with the calculation of the forcing amplitude of the term
ḡ given by the scalar products (3.10) using just (5.1) and (5.2) for the X-dependence
of the three-dimensional unsteady disturbances h1 and vw1, respectively. Further, we
assume vanishing O(1) contributions to h and v in (3.3), i.e. write h = ε4h∞(X)h∗(Z̄, T̄ )
and v = ε4vw∞(X)v∗(Z̄, T̄ ) with unspecified functions h∗, v∗. Results depending on the
location Xc and the length of the devices are shown in figures 19 and 20. The location
of the surface-mounted obstacle is much more sensitive concerning the amplitude
than that of the suction distribution. In both cases, their effect can be maximized if
they are placed immediately upstream of the separation bubble. An efficient method
for increasing the forcing amplitude is to increase the curvature of the obstacle, as
can be seen by inspecting the form of the integral operator I , (3.5). This fact appears
to be intuitively realized in the application of sharp-edged zigzag tape turbulators in
the nose region of airfoils.

6. Summary and conclusions
Analytical and numerical methods were used to study the response of a steady

two-dimensional marginally separated boundary layer to unsteady three-dimensional
disturbances in the limit Γc − Γ → 0. Specifically, it was shown that the perturbations
of the wall shear stress can there be written as a product containing two functions
b and u depending on the streamwise direction X and, respectively, the lateral
distance z ∝ |Γc − Γ |1/4Z and time t ∝ |Γc − Γ |1/2T only. Furthermore, it was shown
that b(X) is fully determined by the properties of the undisturbed flow for Γ = Γc

with the important consequence that the response of the boundary layer in terms
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Figure 20. Forcing amplitude in dependence of location Xc and length L of a suction
distribution according to (5.2). Open circles denote leading-order separation and reattachment
positions.

of the streamwise distance is the same for all possible unsteady three-dimensional
disturbances. The second contribution to the perturbation wall shear stress u(z, t)
which accounts for its variation in the lateral direction and with time was found
to be governed by a nonlinear diffusion equation of the Fisher type. If the flow
disturbances are taken to be independent of z, this equation reduces to an ordinary
differential equation which admits analytical solutions if there is no external forcing
due to surface-mounted obstacles or suction devices. In the below-critical regime
Γ < Γc, there exist two stationary points u =(1, 0) characterizing the upper- and
lower-branch solutions associated with the unperturbed flow which are seen to be
attracting and repelling, respectively. Wall shear stress distributions, therefore, remain
smooth for all times if the initial value u(0) > 0. In contrast, solutions starting with
u(0) < 0 exhibit finite-time blow-up u → −∞ for t → t∗ < ∞. Most important, however,
the occurrence of this singularity does not terminate the solution which can be
continued beyond blow-up and approaches the upper branch eventually as t → ∞.

No stationary points exist in the above-critical regime Γ > Γc and finite-time blow-
up is found to be inevitable. As in the below critical regime, solutions can be continued
beyond the blow-up time t∗. However, since a steady unperturbed state does not exist
for Γ >Γc, the disturbances cannot consolidate, but blow up again in finite time.
This eventually leads to a time periodic flow pattern which describes self-sustained
oscillations of the separation bubble including repeated bubble bursts. The associated
time period �t̄∗ is independent of the initially imposed disturbance level and most
conveniently expressed in terms of the Strouhal number

Str =
L̄

ū∞�t̄∗ ∼ a
9/10
0 U

1/5
00 µcs(Γ − Γc)

1/2

p
3/10
00 πRe1/20

+ · · · (6.1)

as Γ − Γc → 0+ and Re → ∞.
No analytical solutions of the Fisher equation are known if the wall shear stress

distribution depends on the lateral distance. Numerical experiments have shown,
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however, that singularity formation is possible also in this case both in the below-
critical and above-critical regimes. Asymptotic analysis indicates that the blow-up
phenomenon is local in the sense that it occurs at a finite spatial position, at a finite
time. Moreover, as in strictly two-dimensional flows, the solution can be continued
beyond blow-up thereby giving rise to the formation of moving singularities. These
represent propagating vortex sheets qualitatively similar to Λ-vortices arising in the
early stages of laminar–turbulent transition in short separation bubbles.

In addition to unsteady flows, steady strictly two-dimensional flows have also
been investigated with special emphasis on the effect of surface-mounted obstacles
and/or suction. It was found that the critical value Γc of the controlling parameter
can be affected significantly by such devices which might prove useful in practical
applications.

Probably the most relevant study to which the predictions of the present paper
regarding the late stages of laminar separated flow can be compared is that of
Alam & Sandham (2000). They investigated a representative example of marginally
separated flow with turbulent reattachment using direct numerical simulation of the
incompressible Navier–Stokes equations. A steady planar Blasius boundary-layer-
type flow was forced to separate over a short distance. Localized unsteady three-
dimensional disturbances in the form of a suction strip were used to trigger the fast
transition process to turbulent boundary-layer flow. Although it would be possible
to perform a quantitative comparison (at least in principle) we just highlight some
obvious analogies. Concerning two-dimensional flow, it was perceived that vortex
shedding (which is seen to be confined to the boundary layer) persisted even without
external forcing of the flow, ‘though there is disagreement about a precise shedding
criterion’ due to parasitic disturbances of the inflow and outflow boundary conditions
of the numerical scheme (Alam & Sandham, p. 25, figure 26 a, b). In the light of the
present investigation, self-sustained vortex shedding in the form of oscillatory blow-up
is clearly attributed to supercritical flow conditions, see, for example the similarity
law (6.1). In the case of three-dimensional flow figure 11(a) (Alam & Sandham, p. 13)
is of particular interest: periodic forcing results in coherent structures of the
instantaneous contours of the streamwise velocity which eventually collapse, slowly
recovering to an equilibrium turbulent boundary layer; individual bursts reflect
the shape of the function b(X) (cf. figure 16) well. Finally, the surface plot of
spanwise vorticity (Alam & Sandham, figure 12(b), p. 14) displays Λ-shaped vortical
structures within the mean separated region whose core resembles the path of the
moving singularities calculated in § 4 (the spanwise vorticity ωz is, apart from planar
contributions, proportional to the product of b(X)c(Z̄, T̄ ), cf. (3.17)). Their interaction
seems to be responsible for the generation of considerably smaller structures associated
with the developing turbulent flow. In this connection, it should be noted that the
(small) drifting speed of these structures in the streamwise direction within the
framework of the present theory is an effect of higher order which has not been
calculated so far. For a detailed comparison of the implications of the present theory
to experimental observations concerning laminar/turbulent transition in separation
bubbles, see Braun & Kluwick (2004).

Summarizing, the results obtained in the present study indicate:
(i) The passage through Γc is associated with a gradual rather than abrupt change

of flow field. Finite-time singularities describing the phenomenon of bubble bursting
may occur in below-critical as well as above-critical situations. However, while this
phenomenon requires a certain finite perturbation level if Γ <Γc, it is triggered by
even infinitesimally small disturbances if Γ > Γc where also self-sustained oscillations
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with periodically repeated bubble bursts are possible. Oscillating laminar separation
bubbles have been calculated numerically by Hsiao & Pauley (1994) who observed
that the associated amplitude of the reattachment line was significantly larger than
that of the separation line. Within the framework of the present theory, this flow
behaviour is captured by the eigenfunction b(X) whose values at the reattachment
and separation point differs by a factor of about 3.

(ii) The theory of marginally separated laminar flows can indeed describe
phenomena which are of interest in the turbulence context. First, since finite-time blow-
up appears to be a generic feature of above-critical flows ‘the “spotty” or intermittent
character of turbulent dissipation is immediately understandable in terms of the
behaviour near points where singularities of vorticity (and the related deformation
tensor) occur’ (Moffatt 2001). Secondly, the structure of finite-time singularities clearly
displays features which are reminiscent of early stages of laminar–turbulent transition,

(iii) Smart devices such as surface-mounted obstacles and/or suction stripes provide
very effective means of increasing Γc, i.e. to delay laminar–turbulent transition.

Of course, a number of open problems remain. Probably the most important
concerns the question if and how the finite-time singularities can be resolved by
considering scales in space and time where the present theory loses its validity locally.
As proposed in the study by Elliott & Smith (1987), an Euler stage is expected to come
into play eventually where the vorticity generated near the wall penetrates into the
outer part of the boundary-layer. Analytical and numerical evidence provided in the
present study, however, indicates that singularities forming in the limit |Γ − Γc| → 0
are much weaker than in cases where |Γ − Γc| ∼ O(1). As a consequence, it is
expected that this process does not yet lead to a complete change of the flow field
associated with the ejection of a vortex into the external potential flow field, but rather
remains confined to the boundary thereby leading to a reduction of the velocity defect
there which appears to be supported also by numerical findings reported in Alam &
Sandham (2000), Braun et al. (2003) and Mary & Sagaut (2002).

The study of the dynamical behaviour of vortices and in particular the interaction
of vortex sheets generated by different singularities represents an important task
even in the framework of the present theory. As mentioned before, self-sustained
oscillations with periodically occurring bubble bursts are possible in two-dimensional
flows under above-critical conditions Γ > Γc. According to (6.1), the associated time
period is fully determined by the properties of the unperturbed boundary layer for
Γ = Γc, the difference Γ − Γc and Re. Also, it was found possible to construct singular
solutions describing three-dimensional steady flows which are periodic with respect
to the distance in the spanwise direction where, however, the wavelength remains
arbitrary, equation (4.32). It would thus be very important to investigate whether the
forced Fisher equation (4.2) or its super-critical counterpart (4.33) admits in addition
unsteady three-dimensional solutions describing bursting processes which are periodic
in time and space and if a characteristic spanwise spacing of the singularities emerges
from such an analysis. If so, this could shed some light on the streaky structure
of transitional flows. In this connection, we also note the observation that the
steady version of the Fisher equation agrees with the steady integrated version of
the Korteweg–de Vries equation. The latter, however, is known to admit chaotic
behaviour if periodically forced.

Multiplicity of solutions and critical values of the controlling parameter beyond
which steady-state solutions do not exist are a characteristic feature of marginally
separated flows. However, similar phenomena do occur also in situations where
triple-deck theory applies, i.e. in situations where a fully attached boundary layer
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is forced to separate owing to the presence of a large adverse pressure gradient.
Examples displaying such a branching behaviour include supersonic flows past flared
cylinders (Gittler & Kluwick 1987), subsonic flows past expansion ramps and subsonic
trailing edge flows (Korolev 1990). Current work indicates that this indeed leads to
phenomena similar to those described here. This observation is further supported by
a recent publication of Borodulin et al. (2002) in which it was argued that bursting
processes in transitional laminar boundary-layers share common universal properties
that do not depend on the specific problem under consideration.

Finally, we note that the singularities arising in marginally separated flows are
expected to be an effective source of acoustic noise which may be of interest in
connection with flow control (‘laminar–turbulent transition detection’). Again, this is
an area of current work.

The authors are grateful to Professor A. I. Ruban for helpful comments and
discussions, including in particular the ill-posedness of the Cauchy problem associated
with the unsteady version of the interaction equation, during a visit to Vienna
which was supported by the Austrian science foundation FWF in the context of the
‘Wissenschaftskolleg Partielle Differentialgleichungen’.

Appendix. Calculation of higher-order contributions in the expansion of the
wall shear

As pointed out in Braun & Kluwick (2003), it is necessary to apply Poincaré’s
method of strained coordinates for the spanwise direction to determine the higher-
order contribution d(T̄ ) in the expansion (3.4):

εZ = Z̄ + ε6 ln ε χ1(Z̄, T̄ ) + · · · . (A 1)

If, as here, the investigation is restricted to symmetric functions h and vw with respect
to the spanwise coordinate resulting in A(X, Z, T ) = A(X, −Z, T ), we obtain

d(T̄ ) = e−Q(T̄ )

(
d0 +

∫ T̄

T̄ 0

eQ(t)R(t) dt

)
, (A 2)

with

Q(T̄ ) = 2µ

∫ T̄

T̄ 0

c(0, t) dt,

R(T̄ ) =
λ

8π〈n, Kb〉
∂4c

∂Z̄4
(0, T̄ )

〈
n,

∫ X

−∞

dt√
X − t

∫ ∞

−∞
(t − ξ )b dξ

〉
.




(A 3)

Here, d0 = d(T̄ 0) and T̄ 0 denote a constant depending on the initial conditions and a
reference time, respectively. The stretching function χ1 is given by

χ1(Z̄, T̄ ) =
1

〈n, IA∞c〉

∫ Z̄

0

[
〈n, b2〉 d(T̄ ) c(s, T̄ )

− λ

16π

〈
n,

∫ X

−∞

dt√
X − t

∫ ∞

−∞
(t − ξ )b dξ

〉
∂4c(s, T̄ )

∂s4

]
ds +

〈n, Kb〉
〈n, IA∞c〉

d ′(T̄ ) Z̄.

(A 4)
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Numerical calculations for h∞ = vw∞ = 0 yield〈
n,

∫ X

−∞

dt√
X − t

∫ ∞

−∞
(t − ξ )b dξ

〉
≈ −132, 〈n, IA∞c〉 ≈ 1.11. (A 5)

In passing we note that the function d is absent in the case of strictly planar flow. The
calculation of the term a2 in the expansion (3.4) appears to be a sophisticated task
which has not been carried out so far, see also the comments in Braun & Kluwick
(2003).
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